北海电脑维修站

北海电脑维修站

北海电脑主成分分析是指在研究

K―平均算法是一种得到广泛应用的基于划分的聚类算法。其把M个对象分为N个簇北海电脑使得每个簇内具有较高的相似度。


在应用该算法进行数据分析时北海电脑首先应输入包含M个对象的数据集A以及簇的数目N。从A中任意选择N个对象作为初始簇中心并且不断重复北海电脑随后计算出簇中对象的均值北海电脑将每个对象分配到最相似的簇并且不断更新簇均值北海电脑最后计算准则函数直到其不再发生变化为止。因为该算法的复杂度大约是0(nkt)北海电脑所以该算法在处理大数据集时是相对可伸缩的和高效率的。



奇异值分解编辑本段回目录



假设A是一个m×n阶矩阵北海电脑其中的元素全部属于实数域或复数域。如此则存在一个分解使得A=U∑V*。其中U是m×m阶酉矩阵北海电脑Σ是半正定m×n阶对角矩阵北海电脑而V*是n×n阶酉矩阵的共轭转置矩阵。这样的分解就称为A的奇异值分解。


在MATLAB仿真软件中计算奇异值分解的函数式为:[b.c.d]=svd(x)


主成分分析(PCA算法)编辑本段回目录




从宏观上来说北海电脑主成分分析是指在研究一项变量较多的课题时北海电脑将这些变量通过线性变换而简化为几个重要变量的一种多元统计分析方法。而在数据分析领域北海电脑主成分分析的主要作用是对大规模的数据集进行分析与简化。其主要体现在降低数据集的维数北海电脑同时尽可能保持数据集中的对所研究的问题最有价值的特征。简而言之北海电脑就是保留低阶主成分北海电脑忽略高阶主成分。其具体方法是通过对协方差矩阵进行特征分解北海电脑从而得出数据的特征向量与特征值。主成分分析在数学上可以理解为一个正交化的线性变换北海电脑把数据整体变换到一个新的坐标系中北海电脑使得这一数据的任何投影的第一大方差在第一主成分上北海电脑第二大方差在第二主成分上北海电脑依次类推。



决策树学习编辑本段回目录



从广义上讲北海电脑决策树是一种运用图解法的概率分析北海电脑即在已知各种事件发生概率的基础上北海电脑通过构建决策树来探究期望值大于等于零的概率北海电脑同时判断可行性的决策分析方法。


决策树学习是数据分析领域常用的方法北海电脑其目的是构建一个模型来预测样本的目标值。一棵决策树的训练就是依据一个既定指标北海电脑将训练数据集分为几个子集并且在所产生的子集中不断重复此方法的过程北海电脑直到一个训练子集的类标都相同时为止。决策树主要有两种类型:分类树和回归树。其中分类树的输出是样本的类标北海电脑而回归树输出的是一个实数。决策树的优点体现在即可以处理数值型数据也可以处理类别型数据北海电脑并且适合处理大规模数据。


cache
Processed in 0.004672 Second.